Identifikasi Molekuler Bakteri Resisten Logam Berat dari Ekosistem Limbah Batubara untuk Aplikasi Bioremediasi
Article History
Submited : August 12, 2025
Published : January 26, 2026
The existence of heavy metals in the environment is a very important pollution problem that can give rise to problems and instability in ecology. Bioremediation is a technique that can be used to degrade waste metal. The mechanisms of biosorption and bioaccumulation will not influence bacterial viability. The study aims to acquire and identify, in a way, molecular indigenous bacteria from waste that can potentially reduce heavy metal or bioaccumulation. The method covers isolation and screening of bacteria-resistant heavy metals, identification of morphology, and analysis of DNA sequences, as well as reduction tests for heavy metals. The results of the study show 10 isolates of bacteria originating from waste coal were gram-positive, and two isolates of bacteria selected that were IF6 and IF9, were capable of reducing the metal weight of Zn, Pb, and Cd at a concentration of 25 ppm. Conclusion based on identification using 16S rRNA gene sequence shows that isolate IF6 m has an index similarity of 100% with Kocuria flava, and IF9 has similarity with species Fictibacillus nanhensis. This hope can be used to know the ability of indigenous microbes originating from waste coal to degrade heavy metals.
Chen, Y., Fan, Y., Huang, Y., Liao, X., Xu, W., & Zhang, T. (2024). A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicology and Environmental Safety, 269(August 2023), 115905. https://doi.org/10.1016/j.ecoenv.2023.115905
Chen, Y., Wang, W., Zhou, D., Jing, T., Li, K., Zhao, Y., Tang, W., Qi, D., Zhang, M., Zang, X., Luo, Y., & Xie, J. (2020). Biodegradation of lignocellulosic agricultural residues by a newly isolated Fictibacillus sp. YS-26 improving carbon metabolic properties and functional diversity of the rhizosphere microbial community. Bioresource Technology, 310(April), 123381. https://doi.org/10.1016/j.biortech.2020.123381
Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environmental Health Insights, 17. https://doi.org/10.1177/11786302231201259
Deutsch, Y., Samara, M., Nasser, A., Berman-Frank, I., & Ezra, D. (2023). Kocuria flava, a Bacterial Endophyte of the Marine Macroalga Bryopsis plumosa, Emits 8-Nonenoic Acid Which Inhibits the Aquaculture Pathogen Saprolegnia parasitica. Marine Drugs, 21(9). https://doi.org/10.3390/md21090476
Fajriani, B., Budiharjo, A., & Pujiyanto, S. (2018). Isolasi dan identifikasi molekuler bakteri antagonis terhadap Vibrio parahaemolyticus patogen pada udang Litopenaeus vannamei dari produk probiotik dan sedimen mangrove di Rembang. Jurnal Biologi, 7(1), 52–63.
Haghighizadeh, A., Rajabi, O., Nezarat, A., Hajyani, Z., Haghmohammadi, M., Hedayatikhah, S., Asl, S. D., & Aghababai Beni, A. (2024). Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arabian Journal of Chemistry, 17(6), 105777. https://doi.org/10.1016/j.arabjc.2024.105777
Hardiansyah, M. Y., Musa, Y., & Jaya, A. M. (2020). Identification of Plant Growth Promoting Rhizobacteria from Thorny Bamboo Rhizosphere with 3 % KOH Gram Test and Gram Staining Test. International Journal of Applied Biology, 7–17.
Li, J. Y., Liu, Y. F., Zhou, L., Gang, H. Z., Liu, J. F., Sun, G. Z., Wang, W. D., Yang, S. Z., & Mu, B. Z. (2024). A new biosurfactant-producing strain, Fictibacillus nanhaiensis ME46, isolated from an oil field in China. Environmental Technology (United Kingdom), 45(20), 4089–4095. https://doi.org/10.1080/09593330.2023.2240947
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Najjar, A., Hassan, E. A., Zabermawi, N., Saber, S. H., Bajrai, L. H., Almuhayawi, M. S., Abujamel, T. S., Almasaudi, S. B., Azhar, L. E., Moulay, M., & Harakeh, S. (2021). Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-93023-z
Padmavathi, S., & Jayalakshmi, G. (2024). Application of Bioremediation in Mitigation of Heavy Metal Stress on Plants. International Journal of Advanced Research, 12(04), 509–517. https://doi.org/10.21474/ijar01/18576
Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in Microbiology, 13(May), 1–16. https://doi.org/10.3389/fmicb.2022.824084
Priadie, B. (2012). Teknik Bioremediasi Sebagai Alternatif Dalam Upaya Pengendalian Pencemaran Air. Jurnal Ilmu Lingkungan, 10(1), 38. https://doi.org/10.14710/jil.10.1.38-48
Rahadi, B., Susanawati, L. D., & Agustianingrum, R. (2019). Bioremediasi Logam Timbal (Pb) Menggunakan Bakteri Indigenous Pada Tanah Tercemar Air Lindi (Leachate). Jurnal Sumberdaya Alam Dan Lingkungan, 6(3), 11–18. https://doi.org/10.21776/ub.jsal.2019.006.03.2
Raklami, A., Meddich, A., & Oufdou, K. (2022). PlantsMicroorganismsBased-Bioremediation-for-Heavy-Metal-Cleanup-Recent-Developments-Phytoremediation-Techniques-Regulation-Mechanisms-and-Molecular-ResponsesInternational-Journal-of-Molecular-Sciences.pdf.
Rohde, M. (2019). The Gram-Positive Bacterial Cell Wall. Microbiology Spectrum, 7(3), 1–21. https://doi.org/10.1128/microbiolspec.GPP3-0044-2018.Correspondence
Yusuf Fardami, A., Balarabe Ibrahim, U., Sabitu, M., Lawal, A., Ahmad Adamu, M., Aliyu, A., Lawal, I., Ibrahim Dalhatu, A., Sanusi Zainab, M., & Farouq, A. A. (2023). Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review. UMYU Scientifica, 2(1), 76–87. https://doi.org/10.56919/usci.2123.010
Zhou, B., Zhang, T., & Wang, F. (2023). Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Applied Sciences (Switzerland), 13(14). https://doi.org/10.3390/app13148439
Zhou, G., Luo, X., Tang, Y., Zhang, L., Yang, Q., Qiu, Y., & Fang, C. X. (2008). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology, 58(6), 1304–1307. https://doi.org/10.1099/ijs.0.65323-0
Zhou, M., Zhang, Y., Li, X., Wang, Z., Tang, J., Mu, Y., Fang, C., Chen, X., & Dai, J. (2016). Complete genome sequence of Kocuria flava strain HO-9041, a heavy metal removal bacterium from Xinjiang. Journal of Biotechnology, 220, 21–22. https://doi.org/10.1016/j.jbiotec.2016.01.004