INDIGENOUS TRICHODERMA SPP. COLLECTED FROM SHALLOT FIELDS SUPPRESS FUSARIUM ROT DISEASE

Article History

Submited : June 24, 2020
Published : June 24, 2020

Antagonist fungi have enormous potential to be a biological agent to control Fusarium basal rot (FBR) disease in shallot. This study aims to explore, isolated, and tested the antagonistic of Trichoderma sp. indigenous isolated from shallot fields against FBR disease. Exploration of isolates was carried out at the shallot planting center in Sigi Regency. The isolation characterization and inhibition tests were carried out at the Laboratory of Plant Pathology Tadulako University. The inhibition test was using two culture methods. The results showed that there were Trichoderma sp. obtained from shallot fields in the village of Sidera. In vitro test results showed Trichoderma sp., which was found to be able to inhibit the growth of the fungus F. oxysforum. The highest inhibition reached 69.18% within six days. As a comparison of inhibition of Trichoderma harzianum, a laboratory collection, within 6 days only reached 61.06%. Trichoderma sp. the origin of shallot fields was more effectively used as a biological agent in controlling FBR disease.

Amin, F., Razdan1, V.K., Din, F.A.M., Bhat, K.A., S. Banday., 2010. Potential of Trichoderma Species as Biocontrol Agents of Soil Borne Fungal Propagules. Journal of Phytology.

Bommarco, R., Miranda, F., Bylund, H., Björkman, C., 2011. Insecticides Suppress Natural Enemies and Increase Pest Damage in Cabbage. J Econ Entomol 104, 782–791. https://doi.org/10.1603/EC10444.
Chaparro, J.M., Sheflin, A.M., Manter, D.K., Vivanco, J.M., 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48, 489–499. https://doi.org/10.1007/s00374-012-0691-4.

Cloyd, R.A., Bethke, J.A., 2011. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Management Science 67, 3–9. https://doi.org/10.1002/ps.2015.

Harman, G.E., Kubicek, C.P., 2002. Trichoderma And Gliocladium. Volume 1: Basic Biology, Taxonomy and Genetics. CRC Press.

Hirpara, D.G., Gajera, H.P., Hirpara, H.Z., Golakiya, B.A., 2017. Antipathy of Trichoderma against Sclerotium rolfsiiSacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists. MMB 27, 22–28. https://doi.org/10.1159/000452997.

Jardim, A.N.O., Caldas, E.D., 2012. Brazilian monitoring programs for pesticide residues in food – Results from 2001 to 2010. Food Control 25, 607–616. https://doi.org/10.1016/j.foodcont.2011.11.001.

Junianto, Y.D., and Kukanto S., 1995. Virulence of Several Beauveria spp. Bals. Vuil. Isolate on Coffee Berry Borer (HypothenemushempeiFerr.) Under Various Relative Humidities. Pelita Perkebunan 2:64-73.

Khare, E., Kumar, S., Kim, K., 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraiumoxysporum and chickpea wilt. Environmental Sustainability 1, 39–47. https://doi.org/10.1007/s42398-018-0001-7.

Knudsen, G.R., Dandurand, L.-M.C., 2014. Ecological Complexity and the Success of Fungal Biological Control Agents [WWW Document]. Advances in Agriculture. https://doi.org/10.1155/2014/542703.

Kumar, M., Ashraf, S., 2017. Role of Trichoderma spp. as a Biocontrol Agent of Fungal Plant Pathogens, in: Kumar, V., Kumar, Manoj, Sharma, S., Prasad, R. (Eds.), Probiotics and Plant Health. Springer, Singapore, pp. 497–506. https://doi.org/10.1007/978-981-10-3473-2_23.

Lu, Z., Tombolini, R., Woo, S., Zeilinger, S., Lorito, M., Jansson, J.K., 2004. In Vivo Study of Trichoderma-Pathogen-Plant Interactions, Using Constitutive and Inducible Green Fluorescent Protein Reporter Systems. Appl. Environ. Microbiol. 70, 3073–3081. https://doi.org/10.1128/AEM.70.5.3073-3081.2004.

Mahmood, I., Imadi, S.R., Shazadi, K., Gul, A., Hakeem, K.R., 2016. Effects of Pesticides on Environment, in: Hakeem, K.R., Akhtar, M.S., Abdullah, S.N.A. (Eds.), Plant, Soil and Microbes: Volume 1: Implications in Crop Science. Springer International Publishing, Cham, pp. 253–269. https://doi.org/10.1007/978-3-319-27455-3_13.

Monteiro, V.N., do Nascimento Silva, R., Steindorff, A.S., Costa, F.T., Noronha, E.F., Ricart, C.A.O., de Sousa, M.V., Vainstein, M.H., Ulhoa, C.J., 2010. New Insights in Trichoderma harzianum Antagonism of Fungal Plant Pathogens by Secreted Protein Analysis. Curr Microbiol 61, 298–305. https://doi.org/10.1007/s00284-010-9611-8.

Niemeyer, J.C., Lolata, G.B., Carvalho, G.M. de, Da Silva, E.M., Sousa, J.P., Nogueira, M.A., 2012. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Applied Soil Ecology 59, 96–105. https://doi.org/10.1016/j.apsoil.2012.03.019
Nusaibah, S.A., Musa, H., 2019. A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeisguineensis. Trichoderma - The Most Widely Used Fungicide. https://doi.org/10.5772/intechopen.84469.

Promwee, A., Issarakraisila, M., Intana, W., Chamswarng, C., Yenjit, P., 2014. Phosphate Solubilization and Growth Promotion of Rubber Tree (HeveabrasiliensisMuell. Arg.) by Trichoderma Strains. Journal of Agricultural Science 6, p8. https://doi.org/10.5539/jas.v6n9p8

Qi, W., Zhao, L., 2013. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J. Basic Microbiol. 53, 355–364. https://doi.org/10.1002/jobm.201200031.

Qualhato, T.F., Lopes, F.A.C., Steindorff, A.S., Brandão, R.S., Jesuino, R.S.A., Ulhoa, C.J., 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35, 1461–1468. https://doi.org/10.1007/s10529-013-1225-3.

Rosmini, Nasir B.,. 2013. Pemanfaatan Jamur Entomopatogen Beauveria bassianaLokal Sulawesi Tengah UntukPengendalianSpodopteraexigua dan Lyriomisachinensis Hama Endemik Pada Bawang Merah di Sulawesi Tengah. J. Agroland 20:37-45.

Ru, Z., Di, W., 2012. Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. African Journal of Biotechnology 11, 4180–4186. https://doi.org/10.4314/ajb.v11i18.

Schuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87, 787–799. https://doi.org/10.1007/s00253-010-2632-1

Shahabuddin, Hasriyanty,Pasaru F., 2013. PengorokDaun dan PotensiParasitoidnya Pada BerbagaiJenisTanamanSayuran Di LembahPalu, Sulawesi Tengah. J. HPT Tropika. 13:133-140.

Sharma, K.K., Singh, U.S., 2014. Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science 6, 451–456. https://doi.org/10.31018/jans.v6i2.481

Shoresh, M., Harman, G.E., Mastouri, F., 2010. Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annual Review of Phytopathology 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450.

Sobowale, A.A., Odebode, A.C., Cardwell, K.F., Bandyopadhyay, R., 2009. Suppression of Growth of Fusarium verticillioidesNiren. Using strains of Trichoderma harzianumfrom Maize (Zea mays) Plant Parts and Its Rhizosphere. Journal of Plant Protection Research 8.
Syahputra, M.H., Anhar, A., Irdawati. 2017. Isolasi Trichoderma spp. Dari Beberapa Rizosfer Tanaman Padi Asal Solok. J. Biosains 1:97-105.

Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E.L., Ruocco, M., Varlese, R., Marra, R., Lanzuise, S., Eid, A., Woo, S.L., Lorito, M., 2013. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347, 123–129. https://doi.org/10.1111/1574-6968.12231.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Woo, S.L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., Lorito, M., 2014. Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal 8.

Wang, S., Wang, Z., Zhang, Y., Wang, J., Guo, R., 2013. Pesticide residues in market foods in Shaanxi Province of China in 2010. Food Chemistry 138, 2016–2025. https://doi.org/10.1016/j.foodchem.2012.11.116
Yunus, M., Edy, N., Pato, V., Toana, M., Panggeso, J., Pasaru, F., & Asrul, A. (2020). INDIGENOUS TRICHODERMA SPP. COLLECTED FROM SHALLOT FIELDS SUPPRESS FUSARIUM ROT DISEASE. AGROLAND The Agricultural Sciences Journal (e-Journal), 6(2), 126 - 133. https://doi.org/10.22487/agroland.v6i2.179
Fulltext