Manfaat Biosilika dari Kompos Jerami Padi terhadap Produksi Tanaman Sorgum

Article History

Submited : September 15, 2020
Published : December 14, 2020

Tanaman sorgum merupakan sereal yang tergolong akumulator silika, sehingga membutuhkan banyak silika dalam pertumbuhannya. Peningkatan ketersediaan silika dalam tanah dapat dilakukan dengan penambahan biosilika dari jerami padi yang diolah menjadi kompos. Penelitian bertujuan untuk menganalisis manfaat biosilika yang berasal dari kompos jerami padi terhadap pertumbuhan dan produksi tanaman sorgum yang dibudidayakan pada lahan kering. Percobaan dilaksanakan di lahan kering Desa Air Satan Kabupaten Musi Rawas dari bulan Juni sampai September 2019, menggunakan metode eksperimental dengan Rancangan Acak Kelompok non factorial yang diulang 4 kali. Biosilika yang dicobakan: B0 = tanpa biosilika, B1 = 50 kg Si ha-1, B2 = 100 kg Si ha-1, B3 = 150 kg Si ha-1, B4 = 200 kg ha-1, dan B5 = 250 kg Si ha-1. Sorgum varietas Samurai ditanam dengan jarak 25 cm x 60 cm pada petakan yang berukuran 1m x 5 m sebanyak 24 petakan dan diberi pupuk NPK (15:15:15) dengan dosis 300 kg ha-1, tanaman dipanen 110 hari setelah tanam. Peubah penelitian meliputi waktu berbunga (hst), tinggi tanaman (cm), jumlah daun (helai), produksi per ha (ton), bobot 1.000 biji (g), dan bobot biomas basah (kg). Data dianalisis dengan analisis keragaman pada taraf uji 1% dengan uji beda nyata jujur (BNJ). Kesimpulan penelitian ini menunjukkan bahwa biosilika dari kompos jerami padi sangat nyata meningkatkan pertumbuhan dan produksi tanaman sorgum. Pemberian biosilika pada tanaman sorgum di lahan kering sebanyak 250 kg ha-1 meningkatkan produksi sebesar 78%.

  1. Afolabi, R. O., Orodu, O. D., & Seteyeobot, I. (2018). Predictive modelling of the impact of silica nanoparticles on fluid loss of water based drilling mud. Applied Clay Science, 151, 37–45. https://doi.org/10.1016/j.clay.2017.09.040
  2. Akter dan Shirin. 2012. Effect of silikon application levels on rice growth and yield parameters under ambient and elevated temperature in greenhouse condition. Digital Repository at BAU. Bangladesh Agricultural University, Mymensingh. Fakulty of Agriculture. Departement of Environmental Science. Bangladesh.
  3. Amaducci, S., Colauzzi, M., Battini, F., Fracasso, and Perego, A. 2016. Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in water limited environtment. Europ. J. Agron. 76:54-56.
  4. Balai Penelitian Tanah. 2011. Sumber silika untuk pertanian. Warta Penelitian dan Pengetahuan Pertanian. Bogor. 33(3).
  5. Bimasri, J., Budianta, D., Marsi, and Harun, U. 2017. The effect of the origin land and water resources on the fertility of land rice field in Musi Rawas Regency, South Sumatera Province Indonesia. Journal Ekology Environment and Corservation, 23(4):2005-2011.
  6. Bimasri, J., Budianta, D., Marsi, and Harun, U. 2018. Bioavailability of silica on paddy soils with various lan aging in Musi Rawas South Sumatera of Indonesia. the 1st Siwijaya International Conference on Environmental Issues (1st Sricoenv 2018). Proceeding Graduate School of Universitas Sriwijaya 26-27 September 2018, Horizon Ultima Hotel, Palembang Indonesia.
  7. Chairunnisa, C., Hanun, H., dan Mukhlis. 2013. Peran beberapa bahan silikat dan pupuk fosfat (P) dalam memperbaiki sifat kimia tanah andisol dan pertumbuhan tanaman. Jurnal Online Agroekoteknologi, 1(3):732-743.
  8. Direktorat Budidaya Serealia. 2013. Laporan tahunan direktorat budidaya serealia. Direktorat Jenderal Tanaman Pangan Direktorat Budidaya Serealia. Jakarta, 161p.
  9. Djajadi. 2013. Silika (Si) Unsur hara penting dan menguntungkan bagi tanaman tebu (Saccharum officinarum L.). Perspektif. 12(1):47-55.
  10. Dubey, A.K. 2014. The role of silicon in suppressing rice diseases. Asian Journal of Multidiplinary Studies. 2(10):172-176.
  11. Fuadi, J., Kesumawati, E., dan Hayati, E. 2016. Pengaruh dosis kompos limbah bubuk kopi dan pupuk NPK terhadap pertumbuhan dan hasil tanaman cabai merah (Capsicum annum L.). Prosiding Seminar Nasional Biotik. 3(1):211-219.
  12. Glab, L., Sowiński, J., Chmielewska, J., Prask, H., Fugol, M., & Szlachta, J. (2019). Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies. Biomass and Bioenergy, 129, 105332.
  13. https://doi.org/10.1016/j.biombioe.2019.105332
  14. GUNTORO, A. Y., ISLAMI, T., AND SUMINARTI, N. E. 2018. THE EFFECT OF DOSAGE AND RESOURCE OF ORGANIC MATTER ON PLANT GROWTH AND YIELD SORGHUM (SORGHUM BICOLOR (L.) MOENCH) VARIETIES KG4. JURNAL PRODUKSI TANAMAN, 6(9):2015-2021.
  15. He, L., Fan, L. H., Muller, K., Wang, H., Che, L., Xy, S., Song, Z. L., Yuan, G., Rinklebe, J., Daniel, Tsang, C. W., Sikok, Y., and Bolan, N. S. 2018. Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soil. Science of the Total Environment, 625:987-993.
  16. Hosseini, S. Z., Jelodar, N. B., and Bagheri, N. 2012. Study of silicon effects on plant growth and resistance to stem borer in rice. Communications in Soil Science and Plant Analysis. 43(21):2744-2751.
  17. Husnain, S., Rochayati. dan Adam, I. 2011. Pengelolaan hara silika pada tanah pertanian di Indonesia. Badan Litbang Pertanian. Balai Penelitian Tanah. Bogor.
  18. Irawan, B., dan Sutrisna, N. 2011. Prospect of sorghum development in West Java to support food diversification. Forum Penelitian Agro Ekonomi, 29(2):99-113.
  19. Ishak, M., Sudirja, R., dan Ismail, A. 2012. Zonasi kesesuaian lahan untuk pengembangan tanaman sorgum manis (Sorghum bicolor (L.) Moench) di Kabupaten Sumedang berdasar analisis geologi, penggunaan lahan, iklim dan topografi. Bionatura-Jurnal Ilmu ilmu Hayati dan Fisik, 14(3): 173-183.
  20. Kawaguchi, M. (2020). Stability and rheological properties of silica suspensions in water- immiscible liquids. Advances in Colloid and Interface Science, 278, 102139. https://doi.org/10.1016/j.cis.2020.102139
  21. MARXEN, A., KLOTZBÜCHER, T., JAHN, R., KAISER, K., NGUYEN, V. S., SCHMIDT, A., SCHÄDLER, M., AND VETTERLEIN, D. 2016. INTERACTION BETWEEN SILICON CYCLING AND STRAW DECOMPOSITION IN A SILICON DEFICIENT RICE PRODUCTION SYSTEM. PANT AND SOIL. 398(1):153-163.
  22. Muis, A., Sulistyawati, dan Arifin, A. Z. 2018. Pengaruh pemberian kombinasi pupuk NPK dan pupuk kandang sapi terhadap pertumbuhan dan hasil tanaman sorgum (Sorghum bicolor L.). Agroteknologi Merdeka Pasuruan,2(2):23-30.
  23. Nelvia, N. 2018. Sifat fisika tanah perkebunan kelapa sawit (Elaeis guineensis Jacq) setelah diaplikasi tandan kosong kelapa sawit dan limbah cair pabrik kelapa sawit. Jurnal Dinamika Pertanian, 34(1):27-34.
  24. Pradana, G. B. S., Islami, T., and Suminarti, N. E. 2015. Study of combination of phosphorus and potassium fertilizer on growth and yield on two varietas of sorghum (Sorghum bicolor (L.) Moench). Jurnal Produksi Tanaman, 3(6):464-471.
  25. Prażak, R. 2016. Prospects for sorghum cultivation in Poland. Acta Agrobot, 69(2):16-61
  26. Rao, B. D. 2019. Sorghum value chain for food and fodder security. breeding sorghum for deverse and uses. Woodhead publishing Series and food Science, Technology and Nutrition. 409-429 p.
  27. Rekik, I., Chaabane, Z., Missaoui, A., Bouket, A. C., Luptakova, L., Elleuch, A., & Belbahri, L. (2017). Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum ( Sorghum bicolor (L.) Moench), alfalfa ( Medicago sativa L.) and fescue ( Festuca arundinacea Schreb.). Journal of Hazardous Materials, 326, 165–176. https://doi.org/10.1016/j.jhazmat.2016.12.033
  28. Sarker, T. C., Incerti, G., Spaccini, R., Piccolo, A., Mazzoleni, S., and Bonanomi, G. 2018. Linking organic matter chemistry with soil aggregate stability; Insight from 13CNMR spectroscopy. Soil Biology and Biochemistry, 117:175-184.
  29. Sathya, A., Kanaganahalli, V., Rao, P. S., Gopalakrishnan, S. 2016. Cultivation of sweet sorghum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanol. Bioremediation and Bioeconomy, 271-292 p.
  30. Samarappuli, D., & Berti, M. T. (2018). Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. Journal of Cleaner Production, 194, 515–524. https://doi.org/10.1016/j.jclepro.2018.05.083
  31. Schad, M., Konhauser, K. O., Sánchez-Baracaldo, P., Kappler, A., & Bryce, C. (2019). How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth? Free Radical Biology and Medicine, 140, 154–166.
  32. https://doi.org/10.1016/j.freeradbiomed.2019.07.014
  33. Seyfferth, A, and Fendorf, S. 2012. Silicate mineral impacts on the uptake and storage of arsenic ant plant nutrients in rice (Oryza sativa L.). Environ. Science Tecnology. 46(24):13176-13183.
  34. Sommer, M, Kaczorek, D., Kuzyakov, Y., and Breuer, J. 2006. Silicon pools and fluxes in soils and landscapes. Journal Plant Nutrition. Soil Science. 169:310-329.
  35. Suarni. 2016. Role of sorghum physicochemical properties in food diversification and industry and its develompment prospect. Jurnal Litbang Pertanian, 35(3):99-110.
  36. Suryadikarta, D.A. 2010. Uji efektivitas pupuk silikat di rumah kaca. Balai Penelitian Tanah. Badan Penelitian dan Pengembangan Pertanian. Bogor.
  37. Taylor, J. R. N. 2019. Sorghum and millets: taxonomy, history, distribution, and production. Sorghum and Millets (Second edition). Chemistry,Technology and Nutritional Attributes, 1-21 p
  38. Thilagan, K., Mohanty, S., Shahid, M., Tripathi, T., Nayak, A. K., dan Kumar, A. 2014. Role of silikon as beneficial nutrient for rice crop. Popular Kheti. 2(1):105-107.
  39. Tsujimoto, Y., Muranaka, S., Saito, K., and Asai, H. 2014. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen Fertilizer application, and rice-growing environment across sub-saharan Africa. Science Direct. Field Crops Research, 155:1-9.
  40. Wahyudi, I. 2018. Detoksifikasi aluminium dan perubahan serapan posfor tanaman jagung manis (Zea mays saccharata Sturt) akibat pemberian kompos jerami padi pada oxic dystrudepts bobo. Jurnal Crop Agro, 5(1):14-19.
  41. Wihardjaka,A. dan Setyanto. 2008. Emisi dan mitigasi gas rumah kaca dari lahan sawah irigasi dan tadah Hujan. Buku. Pengelolaan Lingkungan Pertanian Menuju Mekanisme Pembangunan Bersih. Balai Penelitian Lingkungan Pertanian. Pati.
  42. Yanai, J., Taniguchi, H., and Nakao, A. 2016. Evaluation of available silicon and its determining factors of agricultural soils in Japan. Journal Soil Science and Plant Nutrition. 62:511-518.
  43. Yasari, E., Yazdpoor, H., Kolhar, H. P., and Mobasser, H. R. 2012. Effects of plant and the application of silica on seed yield an yield components of rice (Oryza sativa L.). International Journal of Biology. 4(4).
  44. Yohana, O, Hanum, H., dan Supriadi. 2013. Pemberian bahan silika pada tanah sawah berkadar P total tinggi untuk memperbaiki ketersediaan P dan Si tanah, pertumbuhan dan produksi padi (Oryza sativa L.). Jurnal Agroekoteknologi. 1(4):1.444-1452.
  45. Yukamgo, E., dan Yuwono, N W. 2007. Peranan silikon sebagai unsur hara bermanfaat pada tanaman tebu. Jurnal Ilmu Tanah dan Lingkungan. 7(2):103-116.
  46. Zhao, G., Kuang, G., Wang, Y., Yao, Y., Zhang, J., & Pan, Z.-H. (2020). Effect of steam explosion on physicochemical properties and fermentation characteristics of sorghum (Sorghum bicolor (L.) Moench). LWT, 129, 109579. https://doi.org/10.1016/j.lwt.2020.109579
  47. Zhou, M., Malhan, N., Ahkami, A. H., Engbrecht, K., Myers, G., Dahlberg, J., Hollingsworth, J., Sievert, J. A., Hutmacher, R., Madera, M., Lemaux, P. G., Hixson, K. K., Jansson, C., & Paša-Tolić, L. (2019). Top-down mass spectrometry of histone modifications in sorghum reveals potential epigenetic markers for drought acclimation. Methods, S1046202319301859.
  48. https://doi.org/10.1016/j.ymeth.2019.10.007
Bimasri, J., Holidi, H., & Murniati, N. (2020). Manfaat Biosilika dari Kompos Jerami Padi terhadap Produksi Tanaman Sorgum. Agroland: Jurnal Ilmu-Ilmu Pertanian, 27(3), 214 - 222. https://doi.org/10.22487/agrolandnasional.v27i3.545
Fulltext